Parents Guide to mathematics in Year 4

• Ark Academy follows the Mathematics Mastery approach in Years R, 1,2,3 and 4.

• This will move up through the school with the children.

• In years 5 and 6 the National Curriculum is followed but using a mastery approach and supported by the maths scheme Abacus.
Key Principles

**Mathematical thinking**
Pupils deepen their understanding by giving an example, by sorting or comparing, or by looking for patterns and rules in the representations they are exploring problems with.

**Conceptual understanding**
Pupils deepen their understanding by representing concepts using objects and pictures, making connections between different representations and thinking about what different representations stress and ignore.

**Mathematical problem solving**

**Language and communication**
Pupils deepen their understanding by explaining, creating problems, justifying and proving using mathematical language. This acts as a scaffold for their thinking deepening their understanding further.
Addition & subtraction in Year 4

Same as Year 3

Column method with up to four digits

Keep decimals aligned

Not most efficient method

Rounding or blank number line

Year 5 and 6: Add whole numbers with more than 4 digits, including using formal written methods (columnar addition). Consolidate previous learning and apply it in multi-step problems. Mentally add numbers using known facts.
Addition & subtraction in Year 3

Same as Year 2

Add and subtract numbers mentally, including:
• a three-digit number and ones; $321 + 8$ $321 - 9$
• a three-digit number and tens; $321 + 20$ $321 - 20$
• a three-digit number and hundreds $321 + 200$ $321 - 200$

Column method with three and four digit numbers; bridging 1,000

1. Add/subtract the ones
   $\phantom{321} + 286$
2. Regroup (above the tens)
   \[
   \begin{array}{c}
   734 \\
   \hline
   \end{array}
   \begin{array}{c}
   8912 \\
   - 4575
   \end{array}
   \]
3. Add/subtract the tens

   $\phantom{321} + 286$
   \[
   \begin{array}{c}
   475
   \end{array}
   \]
Multiplication & division in Year 4

*Recall all times tables up to 12 x 12*

Using known facts and place value for mental multiplication involving multiples of 10 and 100

Mental multiplication of any 2-digit number by a 1-digit number, by partitioning

Mental multiplication of 3 1-digit numbers

Division of a one- or two-digit number by 10 and 100

27 ÷ 10 = 2.7

27.0 ÷ 10 = 2.7

Divide by 10 = 10 times smaller – move decimal one place to the left

Divide by 100 = 100 times smaller - move decimal two places to the left

Short multiplication of 3-digit number by 1-digit number

Short division of 4-digit numbers by 1-digit numbers
Multiplication in Year 4, 5 & 6

Short multiplication

(Any number multiplied by a one digit number)

Year 5: Multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers

Year 6: Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication

1. Multiply the ones
2. Regroup the tens (if needed)
3. Multiply the tens
4. Add the re-grouped tens
## Challenge

- **Fractions, decimals, percentages**

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
<th>Year 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>½ and ¼</td>
<td>¼, 2/4, ¾, 1/3</td>
<td>Add and subtract fractions with the same denominator up to one whole</td>
<td>Add and subtract fractions with the same denominator where the answer may be an improper fraction</td>
<td>Add and subtract fractions where one denominator is a multiple of another</td>
<td>Add and subtract fractions with different denominators</td>
</tr>
<tr>
<td></td>
<td></td>
<td><img src="image" alt="Fraction Addition" /></td>
<td><img src="image" alt="Fraction Subtraction" /></td>
<td><img src="image" alt="Fraction Multiplication" /></td>
<td>Multiply simple pairs of proper fractions</td>
</tr>
<tr>
<td></td>
<td></td>
<td><img src="image" alt="Fraction Division" /></td>
<td><img src="image" alt="Fraction Division" /></td>
<td><img src="image" alt="Fraction Division" /></td>
<td>Divide proper fractions by whole numbers</td>
</tr>
<tr>
<td></td>
<td></td>
<td><img src="image" alt="Fraction Conversion" /></td>
</tr>
<tr>
<td></td>
<td></td>
<td><img src="image" alt="Fraction Comparison" /></td>
</tr>
<tr>
<td></td>
<td></td>
<td><img src="image" alt="Fraction Application" /></td>
</tr>
<tr>
<td></td>
<td></td>
<td><img src="image" alt="Fraction Use" /></td>
</tr>
<tr>
<td></td>
<td></td>
<td><img src="image" alt="Fraction Practice" /></td>
</tr>
<tr>
<td></td>
<td></td>
<td><img src="image" alt="Fraction Challenge" /></td>
</tr>
</tbody>
</table>

- **Development of written methods e.g. long multiplication and long division.**
Concrete, Visual, Abstract

The principle of the CVA approach is that for children to have a true understanding of a mathematical concept there are three phases they need to master: concrete, pictorial and abstract. Reinforcement is achieved by going back and forth between these representations.

Active/concrete ➡️ Building visual images ➡️ Abstract

13 - 8 = 5

12 + 19
Language & Reasoning

The 2014 National Curriculum is explicit in articulating the importance of children using the correct mathematical language as a central part of their learning.

The Talk Task is a crucial opportunity for children to perform tasks where recording is at a minimum with the focus instead being on the correct use of mathematical language.

Write as many words meaning ‘+‘ symbol as possible in 15 seconds.

Megan has made a 3-digit number with these cards.

What is the largest number you can make with these cards? Explain your answer.

Why?

Why not?

What if?
Problem solving

**Word problems:**
There are 10 people on a bus. 4 people get on and 3 people get off. How many people are left on the bus?

**Finding patterns:**
How many squares would be shaped in the 6th shape in this sequence? How do you know?
Arithmetic

Mental arithmetic is an important life skill and regular practice is critical. Without fluency in mental maths to underpin their work in number, children will struggle with many other areas of mathematics. Children who are fluent with number will be able to use their mental arithmetic skills to find efficient strategies for completing calculations, recalling and applying number knowledge rapidly and accurately.

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number bonds within 10 and 20. Roll 2, 10 and 5 times tables</td>
<td>Recall the 2, 5 and 10 times tables</td>
<td>Recall the 2, 3, 4, 5, 8 and 10 times tables</td>
<td>Recall all times tables up to 12 x 12</td>
</tr>
</tbody>
</table>
Multiplication in Year 4, 5 & 6
Short division
(With a one digit divisor)

\[ 96 \div 4 = 24 \]

1. Divide the first number inside the bus stop by the divisor.
2. Write the answer on top and write the remainder, small, before the ones within the dividend.
3. Divide the second number (two digit number i.e. 16) by the divisor and record the answer at the top of the bus stop.

As above, when there is a remainder once the ones within the dividend has been divided by the divisor:
4. Insert a decimal point after the ones with the bus stop and above the bus stop (within the answer)
5. Write the remainder, small, after the decimal point and insert a zero as a place holder i.e. 40
6. Divide the tenths by the divisor and record the answer after the decimal above the bus stop.

If there is a remainder write in small with the bus stop and write a zero as a place holder.
How you can support at home

**Measuring**
- Cooking - weighing and following instructions
- Measure yourself! - make a height strip. Keep a graph to show your growth! How much have you grown?
- Measure stuff! - use a tape measure
- Telling the time - how long until...? Analogue/digital time. Days of the week, dates, keep a calendar/

**Picnic or Party maths:**
- Preparing food for a group of people is a real problem solving opportunity: how many cups can we fill with one jug, how many pieces of pizza can we cut from each one? A great opportunity to use terms like 'half' 'quarter' 'double' and put those tables into practice.

**Shopping games:**
- Set up a mini supermarket in the kitchen and give the children some real money to go shopping with.
- Change can be the trickiest concept and needs to be taught in 'real' shopping activities which can be done really well at home.

**How you can do Maths at Home**

**Number games**
- Board games
- Snakes and ladders
- Dominoes
- Playing card games eg snap, doubles
- Dice games eg exchange game
- Have fun playing with a calculator and try out those signs!

**Shapes everywhere**
- Shopping Shape Sort: let your child loose on the packages and sort them into cuboids, cylinders, cubes
- 2-D shape pictures and patterns
- Which shapes can you draw? You will need a ruler for some of them!
Props around the house


• A prominent clock - digital and analogue is even better. Place it somewhere where you can talk about the time each day.
• A traditional wall calendar - Calendars help with counting days, spotting number patterns and
• Board games that involve dice or spinners - helps with counting and the idea of chance
• A pack of playing cards - Card games can be adapted in many ways to learn about number bonds, chance, adding and subtracting
• A calculator - A basic calculator will help with maths homework when required, there are also many calculator games you can play, too.
• Measuring Jug - Your child will use them in school, but seeing them used in real life is invaluable. Also useful for discussing converting from metric to imperial
• Dried beans, Macaroni or Smarties - for counting and estimating
• A tape measure and a ruler - Let your child help when measuring up for furniture, curtains etc
• A large bar of chocolate (one divided into chunks) - a great motivator for fractions work
• Fridge magnets with numbers on - can be used for a little practice of written methods
• Indoor/outdoor Thermometer - especially useful in winter for teaching negative numbers when the temperature drops below freezing
• Unusual dice - not all dice have faces 1-6, hexagonal dice, coloured dice, dice from board games all make talking about chance a little more interesting
• A dartboard with velcro darts - Helps with doubling, trebling, adding and subtracting.

http://www.mathsisfun.com/
http://www.mathletics.co.uk/
http://www.bbc.co.uk/education
Glossary

Abstract – Written down calculation
Array – Objects or numbers arranged in rows and columns
Bar model – Picture representations in the form of bars to represent relationships between facts in a problem
Bridging – Moving through the 10, 100, 1000 boundary
Bus stop – Visual representation used for to lay out short division
Concrete – Hands on, practical resources
Denominator – The bottom number in a fraction
Digit – A symbol used to make numerals 0-9
Dividend – The amount you want to divide up
Divisor – The number you divide by
Improper fraction – Where a fraction is top heavy; the numerator is larger than the denominator
Mathematics Mastery - A tool used to assist the teaching and learning from Reception to Year 4, on a rolling programme
Numerator – The bottom number in a fraction
Glossary

Partitioning – Splitting a number into parts
Place value - The value of where the digit is in the number (see diagram)

Re-grouping - Making groups of tens when adding or subtracting two digit numbers (or more) and is another name for 'carrying' and 'borrowing'.
Rounding - Making a number simpler but keeping its value close to what it was.
Skip counting - Counting forwards or backwards by a number other than 1
Vinculum - The horizontal line used to separate the numerator and denominator in a fraction
Visual – Mathematical concepts represented by pictures