Skip to main content
Please book for the following Open Days: Primary school: Nov.  No booking required for: 6th Form 20th Nov
Home Home
Main navigation
  • About

    About our school

    Vision and values
    Culture and wellbeing
    Safeguarding
    Key information and policies
    Ofsted and results

    Phases

    Nursery
    Primary
    Secondary
    Sixth form

    Our community

    Team
    Governance
    Pupil voice
    Ark schools
  • Curriculum

    Our approach

    Curriculum overview
    Digital
    Reading
    Homework
    Special educational needs
    Early years foundation stage

    Subjects

    List by subject
    List by year group
    Choosing GCSEs
    Sixth Form courses

    Extended curriculum

    Overview
    Performing arts
    Sport
    Clubs
    Duke of Edinburgh

    Careers & destinations

    Our careers programme
    Bursaries
    Destinations
    Resources
  • Admissions
  • Parent Hub

    Parent handbook

    Parent handbook

    Key information and resources for parents, carers and families.

    Parent hub

    Quick links

    Reporting absence
    Term dates
    School meals
    Uniform
    Payments

    Communication

    My Child at School
    Parent engagement
    Newsletters
    Guides and resources
  • News
  • Calendar
  • Jobs
  • Contact
User account menu
  • Hire facilities
  • Support us

Breadcrumb

  1. Home
  2. Curriculum
  3. Subjects
  4. Maths

Welcome to Maths

Why do we learn maths?
Our approach
Primary
Reception
Year 1
Year 2
Year 3
Year 4
Year 5
Year 6
Secondary
Year 7
Year 8
Year 9
Year 10
Year 11
Year 12
Year 13

Why do we learn maths?

The aim of our curriculum is twofold; to incite curiosity and excitement about maths in the world around us, and to appropriately prepare students to be independent and successful young adults in society.

Some adults leave secondary school lacking the mathematical confidence to be able to understand the breakdown of their own pay slip, compare quotes like for like or recognise the possible bias behind statistics that are being presented to them. Whilst our curriculum strives to stretch and challenge all students, we also recognise the mathematical needs for those who will not study maths beyond GCSE but will need it to function independently and confidently as adults. To help with this aim, we place a big focus in KS3 on driving up numeracy through a series of Do Now’s throughout the autumn and spring term of each year. We also aim to develop learners’ functional maths through regular exposure of problems that directly relate to everyday living.

Our approach

Throughout our curriculum we aim to break any negative preconceptions through the delivery of engaging fertile questions which, where appropriate, give a broad understanding of the applications of maths in real life situations to help make maths more relatable. We aim to develop students curiosity and foster debate and discussion around how and why we can solve problems the way we do as we encourage students to enahnce thier reasoning skills.

Year on year our curriculum is planned and delivered in a spiral manner such that students revisit topics that have been covered in prior years to strengthen thier foundational knowledge before developing the new content. This is in an aim for students to master the content taught.

Finally, our half termly house competitions allow our students to show off what they know and have been taught in a little bit of spirited fun as we look to develop a love of maths in every student we teach.

Primary

Ark Academy mathematics aims to equip all pupils with essential skills. Our mastery approach enables pupils to become  fluent in mathematical fundamentals as well as reason and problem solve. Students will develop conceptual understanding, recall knowledge rapidly, and apply it accurately. They’ll also learn to break down complex problems into simpler steps and persistently seek solutions using mathematical language

Reception

Autumn 1 Autumn 2

Early Mathematical Experiences 

Pattern and Number 
 

Numbers within 6 

Addition and Subtraction within 6 

Measures 

Shape and Sorting

Spring 1 Spring 2

Numbers within 10 

Calendar and time

Addition and Subtraction within 10 

Grouping and Sharing 

Number Patters within 15

Doubling and Halving 

Shape and Pattern

Summer 1 Summer 2

Securing Addition and Subtraction Facts 

Number patterns within 20

Number patterns beyond 20 

Money 

Measures

Explorations of Patterns within Number

Year 1

Autumn 1 Autumn 2

Numbers to 10

Addition and Subtraction within 10

Shapes and Patterns

Numbers to 20

Addition and Subtraction within 20

Spring 1 Spring 2

Time

Exploring Calculation Strategies within 20

Numbers to 50

Addition and Subtraction within 20

Fractions

Measures: Length and Mass

Summer 1 Summer 2

Numbers 50 to 100 and beyond

Addition and Subtraction

Money

Multiplication and Division

Measures: Capacity and Volume

All Year 1 subjects Next Year 1 Subject - English

Year 2

Autumn 1 Autumn 2

Number within 100

Addition and subtraction of 2-digit numbers

Addition and subtraction Word Problems

Measures: Length

Graphs

Multiplication and Division: 2, 5 and 10

Spring 1 Spring 2

Time

Fractions

Addition and Subtraction of 2-digit numbers

Money

Faces, Shapes and Patterns: Lines and turns

Summer 1 Summer 2

Number within 1000

Measures: Capacity and Volume

Measures: Mass

Exploring Calculation Strategies

Exploring Multiplicative Thinking, including 3 and 4 times tables.

All Year 2 subjects Next Year 2 Subject - English

Year 3

Autumn 1 Autumn 2

Number Sense and Exploring Calculation Strategies

Place Value

Graphs

Addition and Subtraction

Measures: Length and Perimeter

Spring 1 Spring 2

Multiplication and Division

Calculating with Multiplication and Division

Time

Fractions

Summer 1 Summer 2

Angles and Shape

Measures

Applying Multiplicative Thinking

Exploring calculation Strategies and Place Value

All Year 3 subjects Next Year 3 Subject - English

Year 4

Autumn 1 Autumn 2

Reasoning with large numbers

Addition and Subtraction

Multiplication and Division

Discrete and continuous data

Spring 1 Spring 2

Calculating with Multiplication and Division

Fractions

Time

Decimals

Measures: Area and Perimeter

Summer 1 Summer 2

Measure and Money Problems

Shape and Symmetry

Position and Direction

Reasoning with Patterns and Sequences

3D Shapes

All Year 4 subjects Next Year 4 Subject - English

Year 5

Autumn 1 Autumn 2

Reasoning with Large Whole Integers

Integer Addition and Subtraction

Line Graphs and Timetables

Multiplication and Division

Perimeter and Area

Spring 1 Spring 2

Fractions and Decimals

Angles

Fractions and Percentages

Transformations

Summer 1 Summer 2

Converting Units of Measure

Calculating with Whole Numbers and Decimals

2D and 3D shapes

Volume

Problem Solving

All Year 5 subjects Next Year 5 Subject - English

Year 6

Autumn 1 Autumn 2

Integers and Decimals

Multiplication and Division

Calculation Problems

Calculation Problems

Fractions

Missing angles and lengths

Spring 1 Spring 2

Decimals and Measure

Missing Angles and Lengths 

Co-ordinates and lengths

Statistics

Proportion Problems 

Summer 1 Summer 2
Revision units Transition to secondary units

All Year 6 subjects Next Year 6 Subject - English

Secondary

Some adults leave secondary school lacking the mathematical confidence to be able to understand the breakdown of their own pay slip, compare quotes like for like or recognise the possible bias behind statistics that are being presented to them. Whilst our curriculum strives to stretch and challenge all students, we also recognise the mathematical needs for those who will not study maths beyond GCSE but will need it to function independently and confidently as adults. To help with this aim, we place a big focus in KS3 on driving up numeracy through a series of Do Now’s throughout the autumn and spring term of each year. We also aim to develop learners’ functional maths through regular exposure of problems that directly relate to everyday living.

Year 7

Autumn 1 Autumn 2

FQ1: Are there numbers big enough and small enough to measure everything?

FQ2: What are the axioms of arithmetic?

FQ3: Could a world without algebra survive?

FQ4: Is life fairer because of maths?

Unit 1: The Decimal Number System

Unit 2: Properties of Arithmetic

Unit 3: Factors and Multiples
 

Unit 4: Order of Operations

Unit 5: Negative Numbers

Spring 1 Spring 2

FQ5: Is beauty mathematical?

FQ6: What happens below zero?

FQ7: Are there different ways to represent integers?

FQ8: How can 2D shapes help us to understand 3D shapes?

Unit 6: Expressions

Unit 7: Equations

Unit 8: Coordinates

Unit 9: Angles

Unit 10: Properties of 2-D Shapes

Summer 1 Summer 2

FQ9: Are there numbers big and small enough to measure everything?

FQ10: How can you create a geometry problem?

FQ11: What can shapes tell us about algebra?

FQ12: How do you know if you have been given the right share?

Unit 11: Conceptualising and Comparing Fractions

Unit 12: Manipulating and Calculating Fractions

Unit 13: Ratio and Proportion

Unit 14: Representing Data

All Year 7 subjects Next Year 7 Subject - English

Year 8

Autumn 1 Autumn 2

FQ1 : Is your guess as good as mine?

FQ2 : Does enlargment affect length areaand volume in the same way?

FQ3 : Can you always predict the next term in a sequence?

FQ4 : Can you solve an equation that isn't equal?

Unit 1: Accuracy and Estimation

Unit 2: Percentages

Unit 3: Expressions

Unit 4: Sequences

Unit 5: Linear Graphs

Spring 1 Spring 2

FQ5 : What is so special about congruent shapes?

FQ6 : How many ways are there to solve an equation?

FQ7 : Is it possible to draw a journey?

FQ8 : How do we describe the relationship between different variables?

Unit 6: Equations and Inequalities

Unit 7: Angles in Polygons

Unit 8: Real life graphs

Unit 9: Direct and Inverse Proportion

Summer 1 Summer 2

Does double the length mean double the pizza?

How can 2D shapes help us to understand 3D shapes?

What is the 'average' Year 8 student like?

What variables impact student progress?

Unit 10: Circles

Unit 11: Volume and Surface Area of Prisms

Unit 12: Univariate Data

Unit 13: Bivariate Data

All Year 8 subjects Next Year 8 Subject - English

Year 9

Autumn 1 Autumn 2

What do we remember about fractions?

What are the chances of winning 21?

How many ways are there to represent different outcomes?

When does one equation not give us one answer?

Can do different equations create the same line?

Unit 1: Fractions, Decimals and Percentages Review

Unit 2: Probability

Unit 3: Sets and Venns

Unit 4: Simultaneous Equations (Algebraically)

Unit 5: Simultaneous Equations (Graphically)
 

Spring 1 Spring 2

What do we remember about angle rules?

How do we find the perfect meeting point?

How does a theorem become so famous?

What do we remember about ratios?

How do we prove without measuring that two shapes are identical?

How did the world around us lead to trigonometry?

Unit 6: Angle Review

Unit 7: Constructions and Loci

Unit 8: Pythagoras's Theorem

Unit 9: Ratio Review

Unit 10: Similarity and Enlargement

Unit 11: Trigonometry

Summer 1 Summer 2

What does it mean to be fluent in algebra?

How powerful are powers?

Is the quadratic the queen of all equations?

Can irrational numbers behave rationally?

Why is standard form the language of the universe?

How do we get money for nothing?

Unit 12: Algebra Review

Unit 13: Quadratics
 

Unit 14: Surds

Unit 15: Indices

Unit 16: Standard Form

Unit 17: Growth and Decay

All Year 9 subjects Next Year 9 Subject - English

Year 10

Autumn 1 Autumn 2

FQ1: How can we model global population growth?

FQ2: How much of Architecture is mathematics?

FQ3: Is a quadratic the queen of all equations?

FQ1: Indicie Laws 

FQ1: Arithmetic and Geometric Sequences

FQ1: Solving linear equations

FQ1: Standard form

FQ1: Exponential growth and decay

FQ2: Plans and Elevations

FQ2: Isometric drawings

FQ2: Loci and constructions

FQ3: Factorising and solving equations 

FQ3: Simultaneous equations

FQ3: Quadratics sequences

FQ3: Plotting graphs

Spring 1 Spring 2

FQ4: How did the world around us lead to trigonometry?

FQ5: What shortcuts can we use to solve cyclic geometry problems?

FQ6: How is a vector similar to a journey?

FQ7: What is the best algorithm for finding true love?

FQ4: Pythagoras Theorem

FQ4: Trigonometry

FQ4: Bearings

FQ5: Angle rules

FQ5: Circle Theorems


FQ6: Translation

FQ6: Vectors

FQ7: Solving equations

FQ7: Sequences

FQ7: Prime factor decompostion, Highest common factors, and Lowest common Multiples

FQ7: Basic operations with fractions

Summer 1 Summer 2

FQ8: Is there a right way to investigate a hypothesis?

FQ9: Do we think in 2 or 3 dimensions?

FQ8: Sampling

FQ8: Averages

FQ8: Data representation

FQ8: Probability

FQ9: 3D Pythagoras

FQ6: Area and perimeter of sectors

FQ6: Surface area and volume problems

FQ6: Plans and elevations

All Year 10 subjects Next Year 10 Subject - English

Year 11

Autumn 1 Autumn 2

Foundation: FQ1 - How does number feature in our GCSE exam?

Foundation: FQ2 - How can we visualise algebraic problems?

Foundation: FQ3 - What does it mean to 'solve' something?

Higher: FQ1 - What makes a number irrational?

Higher: FQ2 - When is it difficult to get a compund measure right?

Higher: FQ3 - How can we visualise algebraic problems?

Higher: FQ4 - How does a function function?

F: Place Value

F: Fractions, decimal and percentages

F: Laws of Indicies

F: HCF and LCM

F: Rounding and Estimation

F: Compound interest

H: Laws of indicies

H: Surds

H: Recurring Decimals

H: Compound Measures

H: Bounds

H: Arc length and sector area


F: Expanding and Factorising

F: Plotting graphs

F: Equation of a straight line

F: Changing the subject

F: Forming and solving equations

F: Inequalities

F: Simultaneous equations

F: Sequences

H: Types of graphs

H: Exponential functions

H: Area under a curve

H: Iteration

H: Composite and Inverse functions

H: Solving equations

Spring 1 Spring 2

Foundation: FQ4 - How has the world been shaped over time?

Foundation: FQ5 - How can maths help us to solve everyday problems?

Foundation: FQ6 - What is a mathematician's favourite shape?

Higher: FQ5 - How can maths help us to solve everyday problems?

Higher: FQ6 - How do I answer questions where I'm asked to explain something?

F: Conversions of length, time and mass

F: Compound Measures

F: Angles

F: Loci and construction

F: Bearings

F: Ratio

F: Functional problem solving

H: Fractions, Decimals and percentages

H: Simple and compound interest

H: Functional graphs

F: Area and perimeter

F: Volume and Surface area

F: Transformations

F: Trigonometry

H: Proof

H: Circle Theorems

H: Congruency

Summer 1 Summer 2
Revision Exams

All Year 11 subjects Next Year 11 Subject - English

Year 12

Autumn 1 Autumn 2

How do you get to the roots of an equation?

What can we draw from an equation?

How do computers accurately estimate large powers of numbers?

Can samples of weather tell us about long term trends?

Algebraic Expressions

Binomial Expansion

Quadratics

Straight Line Graphs

Circles

Probability

Statistical Distributions (Binomial)

Graph Transformations

Differentiation

Hypothesis Testing

Modelling in Mechanics

Constant Acceleration

Spring 1 Spring 2

How accurately can mathematics predict black swan events?

What can calculus tell us about a function?

How are models of growth and decay related?

Why are there multiple solutions to trig equations?

How many different ways are there to represent a vector?

What is the maths behind motion?

How might an understanding of forces help a sportsperson succeed?

Vectors

Integration

Algebraic Methods

Forces and Motion

Trigonometric Ratios

Trigonometric Identities and Equations

Exponentials and Logarithms

Variable Acceleration

The Large Data Set

Summer 1 Summer 2

How many ways are there to write a fraction?

What makes a stand out function?

What can we model with trigonometry?

Binomial Expansion with Negative and Fractional Indices

Radians

Measures of Location and Spread

Representations of Data

More Advanced Trigonometric Functions and Modelling

Revision

End of year exams

All Year 12 subjects Next Year 12 Subject - English

Year 13

Autumn 1 Autumn 2

What can we model with trigonometry?

Is it possible to differentiate everything?

How does maths get you to the moon?

How does integration relate to differentiation?

How do you prove something by contradiction?

How do statisticians test for correlation?

When does the future depend on the past?

How can we model the height of a population?

How can an infinite sum have a finite answer?

Differentiation including Parametrics

Functions in Graphs

Moments

Projectiles

Vectors

Advanced Algebraic Methods

Integration

Conditional Probability

Normal Distribution

Correlation

Spring 1 Spring 2

How can integration help us model the world?

How many ways can you balance a pencil?

How does an engineer design a stable structure?

What is the kinematics behind cricket?

What can vectors tell us about scalars?

Integration

Sequences and Series

Numerical Methods

Variable Acceleration
 

Revision

Summer 1 Summer 2
Revision Exams

All Year 13 subjects Next Year 13 Subject - English

  • Further Maths
  • Geography
Footer
  • Welcome
    • Nursery
    • Primary
    • Secondary
    • Sixth form
  • About
    • Culture and wellbeing
    • Team
    • Policies and reports
  • Curriculum
    • Our approach
    • Subjects
    • Extended curriculum
    • Careers and destinations
  • Parent Hub
    • Term dates
    • Attendance
    • School meals
    • Uniform

Image
Ofsted logo

Image
Living Wage logo

info@arkacademy.org
020 8385 4370

Ark Academy, Bridge Road, Wembley, HA9 9JP

© Ark Schools   |   Privacy